Near-time-optimal tracking controller design for an automotive electromechanical brake
نویسندگان
چکیده
A state-constrained, robust near-time-optimal clamp force tracking controller for an automotive electromechanical brake is presented. The proposed hybrid control structure consists of two switching control laws that handle tracking of rate-bounded references in the presence of state constraints. The responsive tracking utilizes an approximated time-optimal switching curve as a sliding manifold, while state constraints are handled by a linearizing–stabilizing feedback controller. The hybrid controller is proven to asymptotically track the reference in the presence of unknown but bounded time-varying disturbances and modelling errors. Implementation and validation of the proposed controller on a prototype electromechanical brake enables favourable performance comparisons with existing servo control architectures to be obtained.
منابع مشابه
High-Bandwidth Clamp Force Control for an Electromechanical Brake
A controller that fully utilizes the available motor capacity of an electromechanical brake to achieve high closed-loop bandwidth is proposed. The controller is developed based on the time-optimal switching curve derived from Pontryagin's Maximum Principle. The control input is scheduled using a switching surface based on the current motor velocity and position offset. Robustness to modeling er...
متن کاملRobust Control of an Automotive Electromechanical Brake
This paper presents a robust H∞ optimal control design for an automotive electromechanical brake (EMB). The design considers parametric uncertainty, unmodelled dynamics and the need for robust stability and performance. The capacity of a robust EMB control to manage uncertainty and performance is assessed and experimental and simulation results are presented. The tradeoffs involved in meeting a...
متن کاملGain-scheduled wheel slip control in automotive brake systems
A wheel slip controller is developed and experimentally tested in a car equipped with electromechanical brake actuators and a brake-by-wire ABS system. A gain scheduling approach is taken, where the vehicle speed is viewed as a slowly time-varying parameter and the model is linearized about the nominal wheel slip. Gain matrices for the different operating conditions are designed using an LQR ap...
متن کاملIntegrated Primary Controller Design in AC Microgrids Using Optimal Tracking Control Technique
In this paper, an optimal integrated inner controller is designed for the microgrid primary control level. The main task of the primary control level is to maintain stability and proper power sharing in microgrids. Non-optimal controllers have been generally used to design the inner controller in this level in the majority of researches. On the other hand, accurate and complete models of microg...
متن کاملModular design and testing for anti-lock brake actuation and control using a scaled vehicle system
A unique decoupling feature in frictional disk brake mechanisms, derived through kinematic analysis, enables modularised design of an Anti-lock Braking System (ABS) into a sliding mode system that specifies reference brake torque and a tracking brake actuator controller. Modelling of brake actuation, vehicle dynamics, and control design are described for a scaled vehicle system. The overall con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Systems & Control Engineering
دوره 226 شماره
صفحات -
تاریخ انتشار 2012